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Received 20 April 1982 

Abstract. We quantise the classical canonical scattering transformation of Hunziker with 
the representation method of Moshinsky and Seligmann. This leads to a sheeted phase 
space characterised by the number of turns around the scatterer. The usual detection 
device projects on the trivial representation of the corresponding ambiguity group. This 
operation extracts the integer values of the angular momentum. 

1. Introduction 

Recently, following an idea of Hunziker (1968), Narnhofer and Thirring (1981) have 
proposed a nice classical picture of the S-matrix theory. In this approach the pertinent 
object is a generating function of the canonical map between the straight asymptotic 
trajectories before and after the collision. This generating function is simply twice 
the phase shift multiplied by h. 

The concept of generating functions of canonical transformations is old and 
forgotten among the physicist community. A new look at the geometrical significance 
of this formalism may be found in Amiet and Huguenin (1980) for example. The use 
of these generating functions for the calculation of matrix elements of unitary transfor- 
mations (Amiet and Huguenin 198 1) enhances its significance for quantum mechanics 
as already seen by Van Vleck (1928). 

The quantisation of the classical result of Narnhofer and Thirring is, nevertheless, 
non-trivial. For example the phaseshifts are usually defined for integer values of the 
angular momentum, and the definition of the derivative is ambiguous, i.e. the deflection 
angle is not properly defined in quantum mechanics. 

The reason for the difficulty is that the appropriate variables for the description 
of the scattering are the action-angle variables related to the conserved quantities 
instead of the original ( q , p )  phase space variables, a transformation which is not 
one-to-one. 

A way to solve this kind of problem may be found in the work of Moshinsky and 
Seligmann (1980). The concept of ambiguity of a canonical transformation finds a 
natural application in the domain of scattering. Roughly speaking, the detector does 
not separate the contributions of the number of turns of the projectile around the 
scatterer. This is the physical ambiguity. The detector is sensitive to the coherent 
sum of contributions of an arbitrary number of turns. The result is a projection onto 
the trivial representation of the ambiguity group. This projection retains only the 
integer values of the angular momentum. In the discussion of Aharonov-Bohm 
scattering, Berry (1980) has already proposed a similar approach. 
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3706 F Guillod and P Huguenin 

In this paper, we deal with scattering in the plane by a central potential with all 
conditions guaranteeing the existence of the asymptotic states. We use the following 
conventions : 

2. Classical scattering 

Here we recall the results of Narnhofer and Thirring (1981) with special emphasis on 
the ambiguity related to the use of polar coordinates in the momentum plane. Consider 
the map 

f : R2 x R2 + R x R x [O ,  27r[ x R' 

(4, P ) H ( f ,  3; x, h )  

defined by (figure 1) 

t = m 4 * P/lbl12 3 = 4 X P Y  - 4YPX x = tan-' p , / p x  h = /lp(J2/2m. (2.1) 

Except for llpl/= 0, the mapping exists and is one-to-one. But for the sake of quantisa- 
tion, the edge of the domain of (t ,  2; x, h )  presents some difficulties. Following 
Moshinsky and Seligmann (1977,1979,1980), we propose to extend the mapping f 
continuously in such a way that ( t ,  2; x, h )  E R4. To this end, we define the domains 
DN which cover R4: 

DN = R X R X [NT, ( N  + 2 ) ~ [ x ( - l ) ~ R '  NEZ. 

The mapping 

generates the group Z and the powers of a relate the DN to one another. It follows 

Figure 1. ( t , 2 ' ;  ,y, h )  are the appropriate variables for the description of the scattering, 
in particular for the time delay and the deflection angle. 
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that for all (t ,  9; x, h )  E R4 there exists one (unique) N E Z such that 

a-N (t ,  3; x, h )  E D O  

(provided simply that h # 0). We propose now an extension F of f by introducing a 
sheeted phase space 

F :  Z x R2 x R2+ R4 (N ,  4, p)* ( t ,  9; X, h )  E DN 

with 

t = (- UNmq ' P/lb ((2 2? = 4 X P Y  - 4 Y P X  x = tan-' p y / p x  + NT 
h = (-1)Nllpl12/2m. (2.3) 

The inverse transformation F-' is given by 

q x  = ( -yN (2th cos ,y +z sin x) p x  = ( - 1 ) ~ ~ ( - 1 ) ~ 2 m h  cos x 
J(-1) 2mh 

with N such that 

( - l )N = h/lh(  x - NT E [ 0 , 2 ~ [ .  

In this way we achieve a covering of R2 X R2 where the subspace R2 x (0) is removed 
or, inversely, we cover R4 with an infinity of mappings of $ X $ (figure 2). 

The transformation F is canonical and one of its generating functions reads 

W ( p , , p , ;  t ,=W=2 (tan-'py/p, + N r ) - ( - 1 l N t ( d  +p; ) /2m.  (2.4) 

q x  = -aW/aPx qY = -aw/ap, x = a w/az h = -aw/at 
It means 

Figure 2. With the generator a, DN is transformed into DN+l by a translation of v along 
the x axis and a rotation of ir about the same axis. 
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and it is simple to calculate the Jacobian 

a2 w / a p x a s  a2w/ap,at )=- ( - I ) ~ +  
‘et( a 2  w/ap, as a 2  wlap, a t  m 

which says that W unfolds globally the transformation F. 
In the new coordinates the canonical S transformation is very simple. It transforms 

the straight line ( t ,  2; x, h ) ,  -CO < t < +CO, into the new straight line ( t ’ ,  2’; x’, h’), 
-CO < t’ < +CO, canonically, where h‘ = h and 2’ = 2 with our hypothesis on the 
potential. 

The transformation is like a gauge transformation in the energy-angular- 
momentum variables, and the corresponding generating function reads 

(2 .5 )  G(t’, 9’; X, h )  = ~2‘ - ht‘ + 2hSy  (Ih 1)  

t = -dG/ah 2 = aG/aX X I  = aG/a2’ h‘ = -aG/at’ 
with 

where SY (lh 1)  is a functional of the scattering potential, as explicitly given by Narnhofer 
and Thirring. The derivative 2h aS/ah is the time delay and 2h aS/aYP’ the deflection 
angle. This angle may be bigger than 2~ in the case of orbiting. 

3. Quantisation 

Before quantising the classical variables ( t ,  3; x, h) ,  we have to choose a Hilbert 
space. Because ( t ,  2; x, h )  E R4, we suggest to work with 

2 t = L 2 ( R 2 , d ~  d e ;  C).  

We define the IK, E )  representation of % by 

(K, EIK’, E’)=S(K - K ‘ ) a ( E  -E’) ( 3 . 1 ~ )  

( 3 . 1 6 )  

so that IK, E )  form an orthonormal basis of 2t in Dirac’s sense. The 17, A )  representation 
of % is given by 

1 
2 T h  

( K ,  E 17, A )  = - eXp [(i/h)(Kh - E T ) ]  (3 .2 )  

in the ( 3 . 1 )  representation. We again have orthogonality and completeness: 

(7, A ~ T ’ ,  A ’ ) = ~ ( T - T ’ ) S ( A  - A ’ )  ( 3 . 3 a )  

I d~ dA 17, A ) ( T ,  A 1 = U. ( 3 . 3 b )  

It is interesting to compare the ‘plane’ wave (3 .2 )  in the angle and time variables with 
(2 .5 ) .  The phase of the unitary kernel (3 .2 )  has the Van Vleck form corresponding 
to the generating function (2 .5)  if the scattering potential is zero, i.e. for Sp(Ih1) = 0. 
Hence for this transformation, the WKB form is exact. 

The quantisation of the classical quantities (t, 9; x, h )  is now possible. We associate 
the operators (T, L;  K, H )  to them. They act on %! and in the I K ,  E )  representation 
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they are defined by 
a a 

( K ,  E ILlrL) = -ih - ( K ,  E 14) 
aK 

( K ,  E lTl4) = ih ( K ,  E 14) 
(3 .4)  

( K ,  E lKl4) = K ( K ,  E 14) ( K ,  E lHl4) = E ( K ,  E 14). 
Because ( K ,  E )  E R2, (T, L ;  K,  H )  are self-adjoint and have a continuous real spectrum. 
Moreover, I K ,  E )  are eigenfunctions of (K, H )  and writing (3.4) in the 17, A )  representa- 
tion we see that the (7, A )  are eigenfunctions of (T,  L) .  We can also control that 

[ T, HI = [K, L ]  = in 

and that all the other commutators vanish. 

scatterer. To this end, we define three new operators 
Now, we should like to describe the number of turns of the projectile around the 

N = 2 [ K / 2 r ] O ( H )  + ( 2 [ ( K  + T ) / ~ T ]  - 1 ) 8 ( - H )  (3 .5a)  

P = m  (3.56) 

@ = K - N r  ( 3 5 )  

where [ x ]  denotes the integer part of x.  
The operator N will be very useful for the description of a possible orbiting around 

the potential. Clearly, (P, 0, N )  form a complete set of commuting observables and 
their eigenfunctions Ip, cp, n )  are given by 

( 3 . 6 ~ )  

(3.66)  

The range of the spectrum of (P, Q, N )  is R'x [0,27r[ x Z, so the states lp,  cp, n )  
represent a generalisation of the momentum representation. Again the phase of (3.66) 
is a generating function, namely identical with (2.4).  The l p ,  cp, n )  representation 
constitutes a new orthonormal complete set, i.e. 

( 3 . 7 ~ )  

( K ,  Elp, cp, n ) =  m-'12S(E - - ( - l ) " p 2 / 2 m ) ~ ( K  -cp - n r )  

( ~ , A h c p , n ) = - -  - exp { - (i/h)[A (cp + n r )  - ( -1 )"7p2 /2m]) .  
1 1  

2 r h  J m  

( P ,  cp, nlp', cp', n ' ) = p - ' ~ ( p  - p ' ~ ( c p  -cp' )~, , ,  

Jomp dp JO2-dcp lp, cp, n ~ p ,  cp, 111 = 1. 

To prove ( 3 . 7 ~ )  we use the partition of the identity (3.16) 

(3.7b) 

1 
P 

= - a b  - P ' ) S ( c p  -cp')S,tI, 

since (cp, cp') E [O,  2 r [ ,  ( p ,  p ' )  E R'. 
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The completeness relation may be verified by taking matrix elements of (3.7h): 

X6(K -9  -nT)S(K’-cp - n n )  

dx dy6(& -X)~(&’-X)S(K - y ) S ( ~ ’ - y )  

=S(K -K’)S(E -& ’ ) .  

The above calculations exhibit an isomorphism between R and 

~ ~ = 1 2 ( 2 ; L 2 ( 1 W ’ x [ 0 , 2 ~ [ , p  dp d q ;  e)) 
which is suitable for the description of the orbiting. 

lp, q, n )  transforms a ‘basis’ of X in a ‘basis’ of 3% 
In fact, lp, cp, n)  is a ‘basis’ of YL and the unitary operator % defined by % /K,  E )  = 

To describe the classical mapping a ,  we introduce the shift operator A defined by 

This operator is obviously unitary because n E Z. Using the partitions of the identity 
(3.16) and (3.36) we find also 

We have now introduced all the mathematical formalism needed later about the 
Hilbert space. The reader could skip directly to Q 4. 

However, conceptually, we have also to discuss the configuration space. Here we 
encounter the difficulty that operators Q and N fail to commute. Following ideas 
suggested by the work of Zak (1968) we can take Q and A as a system of commuting 
operators. We define the /q, v )  representation by 

1 
2 T h  

( p ,  q, n Iq, v )  = - exp [ - (i/h)p(qx cos cp +qy sin c p ) ]  exp (i2Tvn) 

having the properties 

(3.1 1 b )  
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We shall prove only ( 3 . 1 1 ~ ) ;  with (3.76) we obtain 

+sin p(q, -qk)]}C exp [i27rn(v’-u)] 
n 

= S ( q - q ’ ) C S ( v - v ’ + n )  

= S ( q  - q ’ ) S ( v  - v’) 

n 

where we have used the Poisson formula (A2) and (U, v’) E [0, l[.  
So, in the 14, v )  representation A is diagonal: using (3.8) and (3.10) we obtain 

(4, VIAI4) = ei2.rru (q,vl4) (3.12) 

which shows that ei2wu is an eigenvalue of A. 
Using (3.12) and (3.9) we obtain 

(q, v1A2/7, A )  = exp (i27r2v)(q,  IT, A )  = exp (i27rA/h)(q, V ~ T ,  A ) .  

This means that, if the matrix elements are different from zero, then 2v - A / h  has to 
be an integer. In other words, 2u is related to the fractional part of the angular 
momentum in h units. 

This achieves the complete analogy between classical and quantum descriptions. 
The eigenvalues ( T ,  A ; K ,  E )  correspond to the classical variables ( t ,  2‘; x, h )  in the 
same sense as the eigenvalues of (Q, P) correspond to classical variables (q, p ) .  

4. S- matrix elements and scattering amplitude 

The so-called S matrix is a unitary operator which relates the asymptotic free states 
before and after the collision. The matrix elements may always be written 

1 
( K , E I S ~ T , I \ > = - ~ X ~ [ ( ~ / ~ ) ( K ~  2Th - E T + ~ ~ ~ ( T , ~ ; K , E ) ) ] .  (4.1) 

This form is chosen in analogy with (3.2) and (2.5) but it is general as long as A is a 
complex function. Without scattering potential, A is zero and S = 1. 

For a central real potential, energy and angular momentum are conserved quan- 
tities. This means that 

( K ,  E I S I K ’ ,  &’)Ea(& - E ’ )  ( T ,  AISIT’, A’)aS(A -A’) .  (4.2) 
Calculation of these matrix elements from (4.1) tells us that A has to be independent 
of K and T to guarantee (4.2). The unitarity of the S matrix 

dK da ( T , A I S + I K , E ) ( K , E I S ) T ’ , A ’ ) = S ( T - T ’ ) S ( A  - A ‘ )  

dTdA ( K , E I S ~ T , A ) ( T , A ~ S + I K ’ , E ’ ) = S ( K - K ’ ) S ( E - E ’ )  

demands reality of A. 
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Since the original scattering Hamiltonian commutes with the shift operator A, we 
must demand that S and A commute. Using this fact and (3.9) we can write 

( K ,  E ISIT, A )  = ( K ,  F IASA’IT, A )  

=exp(-iA~r/h) ( K  f~r, - E \ S ( - T , A )  

= ( K , - E ~ ~ / - T , A ) .  

The matrix elements are invariant for the change (e, T ) H ( - E ,  -7). This is possible 
iff A is a function of 181. Finally 

1 
2Irh ( K ,  E 1s 17, A )  = - eXp [ ( i / h ) ( K A  - 87 + 2 h 6 ~  (18 I))]. (4.3) 

The analogy with the classical result is complete. The exponent is identical with the 
classical generating function (2.5). The exact parametrisation (4.3) is defined for all 
real values of the angular momentum and the deflection angle is the derivative of 2h6 
with respect to A. Of course 6 has to be calculated in a quantum way with the 
Schrodinger equation, but the interpretation of the result may be completely classical 
in the form (4.3). 

Now, if we want to make a real scattering experiment we have the difficulty that 
neither angular momentum A nor time T are accessible. In  fact, we prepare and detect 
some momentum p. But in our space X, P do not constitute a complete set of 
commuting observables. We have to give the sheet n. This seems to be complicated 
but is of great advantage: (p’, n‘1Slp, n )  is the probability amplitude to measure the 
momentum p‘ after the collisions if the state was prepared in the state lp, n )  after an 
orbiting of i (n’  -n )  turns around the potential. 

A conventional detector is not sensitive to this number of turns, and by subtracting 
the initial beam, the probability amplitude of detection is 

C(P’rn’lS-nlP,n) 
n’ 

1 
21rhm n 2m 

x J  dA exp[-(i/h)A(cp - q ’ + ( n  -nf)~)]{exp[i2SA(p2/2m)]-1} .  

Contributions to the sum arise for even differences n’-n.  Again with the Poisson 
formula ( A l )  we obtain 

(4.4) 
In this way we obtain the scattering amplitude in the usual form as given by Henneber- 
ger (1980) for the scattering in the plane. The kinematical factor in front is also 
traditional. As it should be, the result is independent of the initial arbitrary chosen 
sheet n. 
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In group theoretical language, the sum on n' is the projection onto the trivial 
representation of the ambiguity group. This projection picks up the integer values of 
the angular momentum A = hl, 1 E Z. Therefore, we lost important information but 
this weakness is not a disease of quantum mechanics. It is the result of a lack of 
imagination in the detection device. 

In our opinion the usual limitation to integer values of 1 from the beginning is a 
root of the difficulties of the inverse problem. We need some interpolation devices 
which follows from more supplementary conditions imposed on the potential, usually 
locality. 

5. Conclusion 

The main result of this work is the need to introduce a sheeted phase space for the 
description of scattering. The sheets are related to the number of turns around the 
scatterer. In this way, the angular momentum takes all real values and the complete 
information on the collision is contained in the phaseshift, a derivable function of 
energy and angular momentum. 

It seems that the use of an additional Aharonov-Bohm effect as a kind of interfer- 
ence plate would give access to other representations of the ambiguity group. In this 
way, the phase would be accessible (in principle) also for non-integer values of the 
angular momentum. 

Appendix. Poisson formula for physicists 

Starting from the usual formula (Berry 1980, Spiegel 1968) 

; 5 dh F ( h )  exp (i27rnh) = c F ( I )  
l 

and choosing F ( A )  = exp (i27rxh) we obtain 

; 5 dh F ( h )  exp (i27rnh) =E 5 dh exp [i27r(n +x)h ]  
n 

= 2 7  16(27r(n  +x) )  
n 

i.e. 
1 ~ ( n  + x )  = E  exp (i27rnx). 
n n 

This is the translation in physicist notation of the result of Schwartz (1979) in 
distribution theory. 
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